黄铜矿的生物浸出研究

来源:网络  作者:网络转载   2019-10-14 阅读:356
       虽然黄矿的生物浸出研究已经存在几十年的历史,但是鉴于黄铜矿具有较高的晶格能以及浸出过程中存在严重的钝化行为,黄铜矿的生物浸出工业应用发展非常缓慢。高温浸矿微生物的发现以及其在生物冶中的应用,对促进黄铜矿的生物浸出有极大的帮助。因此,采用中度嗜热微生物浸出黄铜矿的工业应用开始发展起来。2003年,学者Rawling将目前黄铜矿的工业应用工艺研究归纳为两类:槽浸工艺和堆浸工艺。

1  槽浸工艺

槽浸工艺主要针对浮选后的黄铜矿精矿,反应槽一般备有搅拌装置。通过提高搅拌槽内的反应温度(40~60℃),加人中度嗜热浸矿微生物,并不断地充入二氧化碳和氧气,黄铜矿的浸出率在6~10天之内能达到70%以上。澳大利亚的Mt.Lyell铜矿进行了为期一年的黄铜矿精矿搅拌浸出的半工业实验。实验所用技术为BHP Billiton公司设计的BioCOPTM工艺,但具体的实验数据及结果并没有报道槽浸工艺虽然能较好地控制浸出参数,有效提高黄铜矿的生物浸出速率和浸出率。但工业应用中涉及的投资成本和操作费用相对堆浸工艺要高得多,因而当铜的市场价格不理想时,这种工艺很难得到实际应用。

2堆浸工艺

堆浸工艺是微生物冶金工业应用最为广泛的一种技术。它是指将含有浸矿微生物的溶浸液喷淋(滴渗)到矿石或废石堆上,在其渗滤的过程中,微生物吸附到矿石表面,在适宜条件下不断地生长繁殖,通过“接触”或“非接触”机制有选择地溶解和浸出矿石或废石堆中的有用金属成分,使之转人产品溶液中,以便进一步的提取和回收(见图5-1)。随后高温微生物在生物冶金中的应用,原生硫化矿黄铜矿的生物堆浸工艺也开始逐步发展。其中最典型的一个堆浸场就是位于智利北部的Quebrada Blanca堆浸。该堆场位于海拔4400m高的Alti  Plano山上,平均温度在15℃以下,空气中氧浓度较为低下,一般认为实行生物堆浸是不现实的,堆浸场将矿石粒度100%破碎到9mm以下,然后用热水和硫酸制成矿团,采用履带式运输堆成5-6m高的矿堆,堆底铺设充气管道,用于充气以提高浸矿微生物的活性;堆顶用隔热布盖住,以减少矿堆的热量扩散;浸出初期每隔一段时间喷淋热水,用以提高堆体温度,提高微生物生长速率;浸出进行到中后期,黄矿等矿石分解放热,导致矿堆温度升高,可停止喷淋热水。最终该堆浸工艺成功地处理了17000t/d的原矿石,并获得了较高的铜浸出速率和浸出率。

目前关于黄铜矿生物堆没工业应用研究的报道较少,但是根据次生硫化铜矿和氧化铜矿的堆浸工艺,黄铜矿生物堆浸参数研究同样应该着重于以下几个方面:堆浸高度、矿石粒度、喷淋制度、充气强度等。这些方面的研究对提高堆浸中铜的浸出速率和浸出率有重要的指导意义

A  矿堆高度

矿堆高度是影响生物堆没的主要因素之一。当矿堆过高时,矿石密度过大,溶液渗流容易出现短路,矿堆下部溶浸面积减小,矿石没有与浸出液接触,造成铜浸出率降低;同时高度的增加容易导致浸出液流到矿堆底部时缺少足够的氧,降低了矿堆中氧的传递,从而使浸出反应下降芸至无法反应。因此堆浸生产中应视矿石性质而确定矿堆高度,这样既能保证矿石处理量,又能确保较佳的浸出指标和浸出周期。对于强度大、含泥少、渗透性好的矿石,可以相对增加矿堆高度,其筑堆高度一般均为8-12m。而对于含泥高、渗透性差的矿石。其矿堆高度宜控制在2-5m。

B  矿石粒度

矿石粒度不仅影响堆浸中的化学反应速率,也影响物质的扩散传质速率。矿石粒度较细则矿石颗粒的比表面积越大,溶浸液与矿石的接触面越大,浸出效果越好,投出周期越短。然而,矿石粒度过小,易增加矿堆的含泥量,进而板结,容易导致沟流,影响溶浸液的渗透性能,使局部矿堆形成死角,不利于生物浸出。而且,矿石的过度破碎还会带来较大的生产成本。

唐泉等人分析了矿石粒度对某矿石堆浸的影响。样品矿石被破碎成-30mm、-20mm、-10mm和-5mm四种粒度。浸出实验结果表明:降低矿石粒度有助于提高铀的浸出率和缩短浸出周期。其中-10mm和-5mm的粒径表现效果相近,铀的浸出率都在90%以上,投出周期约为60天,明显高于其他两种粒径。然而,-5mm的粒径需要更多的破碎成本,会大大增加工业生产的能耗和物耗等。因此,采用-10mm的粒径是比较经济适用的。

C  喷淋制度

目前我国生物堆没中采用的布液系统通常包括堰塘灌溉式布液、喷淋器布液、滴淋式布液三种方式,并以喷淋器布液为主,这是因为堰塘灌溉式布液系统不利于空气在矿堆中的流动,容易造成矿堆中的含氧量低,而滴淋式布液安装工作量大,易出现堆没布液死角,布液器被堵后不容易被发现。因此,喷淋器布液在布液的均匀性、空气的流动性等方面优越于前两种布液方式。

喷淋器布液普遍采用两种喷淋头:旋转摇摆式喷头和旋转漫射式喷头。旋转摇摆式喷头质量相对较重,旋转体与支撑体之间易磨损。当其磨损严重会导致阻力增大,旋转不灵活甚至不旋转,以致药液不能分散而形成水柱喷出,浸出液的分布面积大大减少,从而影响铜的浸出率。采用此类喷头必须经常性地更换,增加了堆流成本。而旋转漫射式喷头的旋转体相对较小,质量轻,一般很少造成喷头旋转不灵活,能保证浸出液均匀散射。虽然漫射式喷头需要较大的工作压力和进水口径,但仍被许多堆没厂推荐使用。

采取喷淋布液时,选择合适的喷淋强度是生物堆浸的必要环节。喷淋强度直接影响铜的回收和总成本。适当增大喷淋强度,可加强溶液在矿石之间的相对运动,起到强化扩散的作用。但是喷淋强度过大时,不利于离子在矿物颗粒表面吸附与扩散,此时含有反应物离子的大部分溶液在矿物颗粒间的通道中流动,而矿物颗粒空隙中渗透的液体体积少;并且流速大使得空隙间流体与通道流体界面剪切力过大,不利于物质运输与交换[54]。

D   充气强度

堆体的含氧量主要依靠喷淋液中溶解氧、自然空气渗人以及人工充气来实现,其中喷淋液的溶氧量般低于l%,而且随着溶液中金属离子浓度的升高,溶氧量会有所下降;自然空气通过虹吸作用可以带入一定的氧气,但是当矿堆规模较大、占地面积较广时,堆中心就无法依靠虹吸作用来带入足够的氧气。尤其在生物堆浸硫化铜矿时,由于部分矿物分解放热,导致堆中心温度较高,溶氧量急剧下降,非常不利于浸矿微生物的生存,从而延缓微生物浸出,降低铜的浸出速率和浸出率。因此筑堆过程中应于矿堆底部铺设充气管道,间断性地给堆体充气,有利于增加矿堆的溶氧量,从而提高生物浸出能力。

吴爱祥等人在进行低渗透性矿堆浸孔隙率改善研究中发现,浸出中后期,由于生化反应的剧烈进行,矿物力学性质恶化,产生次生颗粒,显著降低孔隙率,严重影响着堆的渗透性。此时可通过加大充气强度,形成一种空气波,通过波的传递作用于孔隙壁上,有效降低颗粒之间的黏性阻力和内摩擦力,从而提高孔隙中微粒的流动性,保持孔隙的畅通。

    M.L Heetor研究了充气强度对辉铜矿堆浸中铜浸出率和微生物活性的影响。实验矿堆矿石总量为62500t,堆高约6.2m。在距离底垫lm、3m和5m处铺设氧含量测试仪器,用来检测不同浸出时期和不同高度的氧气含量。在两个多月的实验中发现,矿堆底部由于空气的大量充入氧含量接近饱和。但当空气随着矿孔隙向上提升时,不断地被浸矿微生物消耗掉,氧含量不断降低。当接近堆顶时(差约1 m),氧气消耗殆尽。氧消耗量大表明微生物量大,活性高,浸出能力增强,从而有利于提高铜的浸出速率和浸出率。

标签: 黄铜矿
打赏

免责声明:
本站部份内容系网友自发上传与转载,不代表本网赞同其观点;
如涉及内容、版权等问题,请在30日内联系,我们将在第一时间删除内容!

购物指南

支付方式

商家合作

关于我们

微信扫一扫

(c)2008-2018 DESTOON B2B SYSTEM All Rights Reserved
免责声明:以上信息由相关企业或个人自行免费发布,其真实性、准确性及合法性未证实。请谨慎采用,风险自负。本网对此不承担任何法律责任。

在线咨询

在线咨询:

QQ交流群

微信公众号